skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simms, Alexander R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Past sea levels provide important constraints on global ice volumes, rates of tectonic motion, ice-sheet sea-level feedbacks, and the migration of species through time. Beneath formerly glaciated regions, the marine limit, the maximum extent of sea-levels after glacial retreat, provides some of the oldest post-Last Glacial Maximum (LGM) sea-level constraints. However, although the elevations of marine limits are plentiful, they often remain undated. In this study, we provide new age and elevation constraints on the late Pleistocene relative sea-level (RSL) history at 12 sites along the eastern flanks of the former Minch Ice Stream (MnIS) of northwest Scotland. Optically stimulated luminescence (OSL) was used to date the highest and presumably oldest preserved RSL indicators immediately after ice-sheet retreat. Although slightly older than earlier estimates, our ages confirm the early deglacial age of ~16.2–19.5 ka for the raised shorelines of northwest Scotland with declining marine limits north of the Isle of Skye from 26.2 ± 4.8 m at Ardaneaskan to 12.8 ± 4.8 m elevation at Achiltibuie, the latter of which lies inside the moraines of the Wester Ross Readvance. Our new OSL ages suggest deglaciation of the MnIS may have been slightly earlier than previously thought, although our large error bars highlight the need for additional age constraints. Our new RSL data provide important constraints for Glacial Isostatic Adjustment (GIA) models for Scotland and shed light on the behavior of the former MnIS, thought to be susceptible to marine ice-sheet instability. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Sea-level changes in polar environments are important for understanding the timing and magnitude of past ice-sheet changes. Most of the few records of such past sea-level changes in Antarctica are those derived from raised beach ridges. Many studies using raised beach ridges to reconstruct past sea levels across Antarctica commonly assume that they only record falling sea levels. However, their internal architecture may contain a record of other oscillations in relative sea-level (RSL) change. In this study, we examine the internal architecture of a well-developed set of raised beach ridges on Livingston Island of the Antarctic Peninsula using 10+ km of ground penetrating radar (GPR). Recalibrated published radiocarbon ages are used in combination with new optically stimulated luminescence (OSL) ages to compare beach morphology and stratigraphy to the glacial history of the region. Within this flight of raised beach ridges, evidence was found for both regressive and transgressive depositional patterns marked by progradational seaward dipping facies deposited during periods of RSL fall followed by erosion and deposition of landward dipping overwash and aggrading beds during interpreted periods of RSL rise. This succession is routinely located over a notch in the bedrock interpreted to represent a wave-cut feature. The ages of raised beach ridges underlain by wave-cut notches and composed of landward-dipping strata correlate with known Holocene ice advances at <500, ~2000, and ~5000 cal yrs BP. We propose that these transgressive phases are the result of glacial-isostatic adjustment (GIA). This GIA hypothesis further supports recent assertions of a much more dynamic RSL history for Antarctic coastlines, which may contaminate the Last Glacial Maximum RSL signal across Antarctica. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. ABSTRACT Raised shorelines provide important constraints on past sea levels, glacial isostatic adjustment (GIA), and rates and directions of vertical crustal motion. Although most raised shorelines across NW Scotland relate to post‐Last Glacial Maximum (LGM) glacial‐isostatic rebound, many undated shorelines lie above the marine limit established from isolation basins. Here, we present new optically stimulated luminescence (OSL) ages for a raised marine terrace at an elevation of 28 m in Slaggan Bay of NW Scotland. Four OSL ages suggest the feature is pre‐LGM, likely Marine Isotope Stage (MIS) 3. Global mean sea levels (GMSL) during MIS 3 are thought to have been ~40–60 m below present across most of the globe. We use a pair of GIA models to determine what ice sheet and sea‐level scenarios might provide an explanation for these anomalously high sea levels during MIS 3. Our results suggest that in the absence of tectonic activity, such high MIS 3 shorelines across NW Scotland require a MIS 4 ice sheet in Scotland, with postglacial rebound of the crustal depression following its demise during MIS 3 responsible for the elevated shoreline features at that time. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. Global sea levels during the last interglacial (LIG), 129,000–116,000 years ago, may have reached as much as 5–10 m higher than present. However, the elevation of the LIG highstand varies locally due to tectonics, subsidence, steric effects, and glacial isostatic adjustment (GIA). The variability brought upon by GIA can be used to constrain the past distribution of ice sheets including the source of higher sea levels during the LIG. In spite of its importance for fingerprinting the source of additional meltwater at the LIG, little is known about the elevation of LIG sea levels across Antarctica. In this study we review the geologic constraints on the elevation of the LIG highstand across Antarctica. We find that although several Late Pleistocene sea-level constraints are available across the continent very few of them provide definitive LIG ages. Arguably the most probable LIG sea-level indicators come from East Antarctica but most of them have age constraints approaching the limits of radiocarbon dating (>~45 ka) with many likely dating to Marine Isotope Stage 3, not the LIG. For West Antarctica, Late Pleistocene sea level constraints are confined to a few poorly or completely undated possible examples from the Antarctic Peninsula. Our review suggests that much more work is needed on constraining the elevation of the LIG highstand across Antarctica. 
    more » « less
  5. Radiocarbon dating is arguably the most common method for dating Quaternary deposits. However, accurate age assignments using radiocarbon dating are dependent on knowing the radiocarbon reservoir. For the coastal waters across Antarctica, the radiocarbon reservoirs show significant variation, ranging from 700 to 6000 years depending on the material dated and the period in question. In this study, we examine the radiocarbon reservoir age for the shallow waters of the Southern Ocean using 23 whale bones salvaged from commercial whaling operations on or near the Western Antarctic Peninsula between 1904 and 1916. The species origin of the bones had been identified previously as humpback, fin, or blue whales using sequences of mitochondrial (mt)DNA. We find an average reservoir age of 1050 ± 135 years for these 23 whale bones, with a <100-year difference in the reservoir age by species. A comparison between our results and other studies through the Holocene suggest that the Southern Ocean surface water radiocarbon reservoir age is of a similar magnitude across much of Antarctica and has not significantly changed for the last 14,000 years. Combining our new ages with existing data sets provides insight to the stability of the Southern Ocean marine radiocarbon reservoir age, enhancing our understanding of ocean ventilation and upwelling dynamics throughout the Holocene. 
    more » « less
  6. Abstract In order to reconstruct past environmental conditions along the north-eastern Antarctic Peninsula, we documented changes in grain size, grain roundness, onlap as seen in ground-penetrating radar reflection profiles and ice-rafted debris on a set of 36 raised beaches developed over the last ~7.7 ± 0.9 ka on Joinville Island. The most pronounced changes in beach character occur at ~2.7–3.0 ka. At this time, there appears to have been a reintroduction of less rounded material, the development of stratification within individual beach ridges, an introduction of seaweed and limpets to the beach deposits, a change in clast provenance (although slightly earlier than the change in cobble roundness) and a shallowing of the overall beach plain slope. Prolonged cooling associated with the Neoglacial period may have contributed to these changes, as the readvance of glaciers could have changed the provenance of the beach deposits and introduced more material, leading to the change in roundness of the beach cobbles and the overall slope of the beach plain. This study suggests that late Holocene environmental change left a measurable impact on the coastal zone of Antarctica. 
    more » « less
  7. Abstract Stratigraphic evidence for coseismic subsidence has been documented in active-margin estuaries throughout the world. Most of these studies have been conducted in subduction zone or strike-slip settings; however, the stratigraphic response to coseismic subsidence in other tectonic settings would benefit from further study. Here we show evidence of late Holocene coseismic subsidence in a structural estuary in southern California. Below the modern marsh surface, an organic-rich mud containing marsh gastropods, foraminifera, and geochemical signatures indicative of terrestrial influence (mud facies) is sharply overlain by a blue-gray sand containing intertidal and subtidal bivalves and geochemical signatures of marine influence (gray sand facies). We use well-established criteria to interpret this contact as representing an abrupt 1.3 ± 1.1 m rise in relative sea level (RSL) generated by coseismic subsidence with some contribution from sediment compaction and/or erosion. The contact dates to 1.0 ± 0.3 ka and is the only event indicative of rapid RSL rise in the 7 k.y. sedimentary record studied. Consistent with observations made in previous coseismic subsidence studies, an acceleration in tidal-flat sedimentation followed this abrupt increase in accommodation; however, the recovery of the estuary to its pre-subsidence elevations was spatially variable and required 500–900 years, which is longer than the recovery time estimated for estuaries with larger tidal ranges and wetter climates. 
    more » « less
  8. Abstract Recent ice-mass loss driven by warming along the Antarctic Peninsula has resulted in rapid changes in uplift rates across the region. Are such events only a function of recent warming? If not, does the Earth response to such events last long enough to be preserved in Holocene records of relative sea level (RSL), and thus have a bearing on global-scale glacial isostatic adjustment (GIA) models (e.g. ICE-6G)? Answering such questions in Antarctica is hindered by the scarcity of RSL reconstructions within the region. Here, a new RSL reconstruction for Antarctica is presented based on beach ridges from Joinville Island on the Antarctic Peninsula. We find that RSL has fallen 4.9 ± 0.58 m over the past 3100 yr, and that the island experienced a significant increase in the rate of RSL fall from 1540 ± 125 cal. (calibrated) yr B.P. to 1320 ± 125 cal. yr B.P. This increase in the rate of RSL fall is likely due to the viscoelastic response of the solid Earth to terrestrial ice-mass loss from the Antarctic Peninsula, similar to the Earth response experienced after ice-mass loss following acceleration of glaciers behind the collapsed Larsen B ice shelf in 2002 C.E. Additionally, slower rates of beach-ridge progradation from 695 ± 190 cal. yr B.P. to 235 ± 175 cal. yr B.P. potentially reflect erosion of beach ridges from a RSL rise induced by a local glacial advance. The rapid response of the Earth to minor ice-mass changes recorded in the RSL record further supports recent assertions of a more responsive Earth to glacial unloading and at time scales relevant for GIA of Holocene and Pleistocene sea levels. Thus, current continental and global GIA models may not accurately capture the ice-mass changes of the Antarctic ice sheets at decadal and centennial time scales. 
    more » « less